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Introdu
tionThe problem of nearest neighbor sear
h, also known as the post o�
e problem [7℄ has been widelyinvestigated in the area of 
omputational geometry. It is en
ountered for many appli
ations, as patternre
ognition and ve
tor quantization.The post-o�
e problem has been solved near optimally for the 
ase of low dimensions. Algorithmsdi�er on their pra
ti
al e�
ien
y on real data sets. For large dimensions, most solutions have a 
omplexitythat grows exponentially with the dimension, or require a bigger query time than the obvious brute for
ealgorithm. In fa
t, it has been noti
ed that, if n is the size of the data set and d is the dimensionality,the best 
hoi
e be
omes linear sear
h when d > K log(n) for some positive 
onstant K whi
h dependson the 
hosen algorithm. This e�e
t is known as the 
urse of dimensionality.As 
on
erns the appli
ation to (Voronoi) ve
tor quantization, nearest neighbor proje
tions are re
-ognized to represent the 
riti
al part of most 
odebook optimization algorithms. In this 
ase, the bigamount of nearest neighbor sear
hes we have to do shows that a prepro
essing of the data-set will bepro�table if it redu
es the average query time. Still, in some parti
ular 
ases, the 
odebook is 
hosen sothat nearest neighbor sear
h is performed easily, (as when dealing with produ
t quantization). Moreover,non-Voronoi quantization methods 
an also be designed in order to simplify the proje
tion pro
edurewhile preserving some important properties of optimal quantizers, as the stationarity in the quadrati

ase.Let us also point out that a �eld re
ently emerged under the name of dual quantization [11, 12℄. Inthis 
ontext, the nearest neighbor sear
h, i.e. the lo
ation of a point in a Voronoi partition, is repla
edby the analogous pro
edure in the Delaunay triangulation. This lo
alization pro
edure in Delaunaytriangulations have been widely investigated in the pra
ti
al viewpoint in terms of redu
tion of its
omputational 
omplexity. We refer to Devillers, Pion and Teillaud for a review on this subje
t [2℄.Many nearest neighbor sear
h algorithms rely on a re
ursive partitioning of the data-set resulting ina sear
h-tree data stru
ture [1, 10℄. The method proposed by M
Names in [10℄ improved the 
lassi
alKd-tree algorithm [1℄ by taking advantage of the shape of the data-set thanks to prin
ipal 
omponentanalysis. The �prin
ipal axis tree� algorithm performs mu
h faster than the 
lassi
al Kd-tree when the
oordinates of the data-set are 
orrelated and it seems to take better the growth of dimensionality.In our 
ase, the proposed algorithm uses ve
tor quantization as a 
lustering method to perform thisre
ursive partitioning and to take advantage of the geometry of the data-set. It is 
lassi
al ba
kgroundthat when dealing with empiri
al distributions, the quadrati
 ve
tor quantization problem is equivalentto the redu
tion of the intra
lass inertia of the related partition, and the spe
i�
ation of the 
lassi
alLloyd algorithm to this 
ase turns out to be the k-means 
lustering algorithm.We will see that one draw-ba
k of this kind of partition is that, as other tree-based sear
h algorithms,after determining the 
losest neighbor of a query in a leaf-node of the tree, the pro
edure has to moveup to the parent node and determine whether brother nodes have to be explored or not. Unlike Kd-treeand �prin
ipal axis tree�, our so-
alled �quantization tree� 
an't eliminate several brother nodes by witha single test. This is the motivation for the development of our friend node algorithm.The paper is organized as follows. Se
tion 1 is devoted to 
lassi
al de�nitions and notations relatedto ve
tor quantization. The link with the 
lassi�
ation problem is pointed out. Se
tion 2 re
alls in mindsome de�nitions of 
omputational geometry whi
h will be useful in the sequel. As both the �elds of ve
torquantization and algorithmi
 geometry deal with the notion of Voronoi diagram, we apply ourselves todistinguish the 
orresponding de�nitions and notations. Se
tion 3 makes a brief presentation of boththe Kd-tree [1℄ and �prin
ipal axis tree� [10℄ algorithms. We deal with some optimizations that will beappli
able with our quantization tree. Se
tion 4 presents the �
rude� quantization tree, i.e. withoutusing any friend node algorithm. It is presented as the natural 
ounterpart these two bran
h and boundalgorithms with a quantization based partition of the data-set. Se
tion 5 presents the friend nodealgorithm whi
h was dis
ussed above. Finally, the last se
tion provides some performan
e 
omparisonsbetween the di�erent algorithms on various data-sets.1 Ve
tor quantization and Voronoi tessellationsWe 
onsider (Ω,A,P) a probability spa
e and E a (real) �nite dimensional Eu
lidean spa
e. The prin
ipleof a random variable X taking its values in E is to approa
h X by a random variable Y taking a �nite2



number of values in E.De�nition 1 (quantizer). In this surrounding, the dis
rete random variable Y is a quantizer of X.If X ∈ Lp, the quantization error is the Lp norm of |X − Y |, where | · | denotes the Eu
lidean norm on
E. The minimization of this error yields the following minimization problem

min{‖X − Y ‖p, Y : Ω → E measurable , card(Y (Ω)) ≤ N}. (1)De�nition 2 (Voronoi partition). Consider N ∈ N∗, Γ = {γ1, · · · , γN} ⊂ E and let C = {C1, · · · , CN}be a Borel partition of E. C is a Voronoi partition asso
iated with Γ if ∀i ∈ {1, · · · , N}, Ci ⊂ {ξ ∈
E, |ξ − γi| = min

j∈{1,··· ,N}
|ξ − γj |}.If C = {C1, · · · , CN} is a Voronoi partition asso
iated with Γ = {γ1, · · · , γN}, it is 
lear that ∀i ∈

{1, · · · , N}, γi ∈ Ci. Ci is 
alled Voronoi slab asso
iated with γi in C and γi is the 
enter of the slab Ci.We denote Ci = slabC(γi). For every a ∈ Γ, W (a|Γ) is the 
losed subset of E de�ned by W (a|Γ) =§
y ∈ E, |y − a| = min

γ∈Γ
|y − γ|

ª
.De�nition 3 (Nearest neighbor proje
tion). Consider Γ ⊂ E a �nite subset of E. A nearest neighborproje
tion onto Γ is an appli
ation ProjΓ that satis�es
∀x ∈ E,

��x− ProjΓ(x)
�� = min

γ∈Γ
|x− γ|.To be more pre
ise, if ProjΓ is a measurable nearest neighbor proje
tion onto Γ, there exists a Voronoipartition C = {C1, · · · , CN} asso
iated to Γ su
h that ProjΓ =
NP
i=1

γi1Ci
.Proposition 1.1. Let X be an E-valued Lp random variable, and Y taking its values in the settled pointset Γ = {y1, · · · , yN} ⊂ E where N ∈ N. Set ÒXΓ the random variable de�ned by ÒXΓ := ProjΓ(X) where

ProjΓ is a nearest neighbor proje
tion on Γ, 
alled a Voronoi Γ-quantizer of X.Then we 
learly have ���X − ÒXΓ
��� ≤ |X − Y | a.s.. Hen
e 


X − ÒXΓ





p
≤ ‖X − Y ‖p.A 
onsequen
e of this proposition is that solving the minimization problem (1) amounts to solving thesimpler minimization problem

min {‖X − ProjΓ(X)‖p, Γ ⊂ E, card(Γ) ≤ N} . (2)The quantity ‖X − ProjΓ(X)‖p is 
alled the mean Lp-quantization error. When this minimum is rea
hed,we refer to Lp-optimal quantization.The problem of the existen
e of a minimum have been investigated for de
ades on its numeri
al andtheoreti
al aspe
ts in the �nite dimensional 
ase [5℄. For every N ≥ 1, the Lp-quantization error isLips
hitz-
ontinuous and rea
hes a minimum. An N -tuple that a
hieves the minimum has pairwisedistin
t 
omponents, as soon as card(supp(PX)) ≥ N . This result stands in the general 
ase of a randomvariable valued in a re�exive Bana
h spa
e [8℄. If card(X(Ω)) is in�nite, this minimum stri
tly de
reasesto 0 as N goes to in�nity. The asymptoti
 rate of 
onvergen
e, in the 
ase of non singular distributionsis ruled by the Zador theorem [5℄. A non-asymptoti
 upper bound for the quantization error is alsoavailable [9℄.We now fo
us on the quadrati
 
ase (p = 2). For a L2 random variable X , we now denote CN (X)the set of L2-optimal quantizers of X of level N and eN(X) the minimal quadrati
 distortion that 
anbe a
hieved when approximating X by a quantizer of level N . A quantizer Y of X is stationary (orself-
onsistent) if Y = E[X |Y ].Proposition 1.2 (Stationarity of L2-optimal quantizers). A (quadrati
) optimal quantizer is stationary.The stationarity is a parti
ularity of the quadrati
 
ase. In other Lp 
ases, a similar property involvingthe notion of p-
enter o

urs. A proof is available in [6℄.3



De�nition 4 (Centroidal proje
tion). Let C = {C1, · · · , CN} be a Borel partition of E. Let us de�nefor 1 ≤ i ≤ N , Gi =

§
E[X |X ∈ Ci] if P[X ∈ Ci] 6= 0,
0 in the other 
ase, the 
entroids asso
iated with X and C.The 
entroidal proje
tion asso
iated C and X is the appli
ation ProjC,X : x →

NP
i=1

Gi1Ci
(x).Lemma 1.3 (Huyghens, varian
e de
omposition). Let X be a E-valued L2 random variable, N ∈ N∗and C = (Ci)1≤i≤N a Borel partition of E. Consider ProjC,X =

NP
i=1

Gi1Ci
the asso
iated 
entroidalproje
tion. Then one has,

Var(X) = E
���X − ProjC,X(X)

��2�| {z }
:=(1)

+E
���ProjC,X(X)− E[X ]

��2�| {z }
:=(2)

.The varian
e of the probability distribution X de
omposes itself as the sum of the intra
lass inertia
(1) and the inter
lass inertia (2).Proof:

Var(X) = E
���X − ProjC,X(X) + ProjC,X(X)− E[X ]

��2�
= E

���X − ProjC,X(X)
��2�| {z }

=(1)

+E
���ProjC,X(X)− E[X ]

��2�| {z }
=(2)

+2E
�¬
X − ProjC,X(X),ProjC,X(X)− E[X ]

¶�| {z }
:=(3)

.Now (3) = 0 sin
e ProjC,X(X) = E
�
X
��ProjC,X(X)

�. �2 Ba
kgrounds on theory of polytopesLet E be a d dimensional ve
tor spa
e and E∗ its dual.De�nition 5 (k-�at). A k-�at is a k-dimensional a�ne subspa
e E.De�nition 6 (
onvex polyhedron and 
onvex polytope). A 
onvex polyhedron is the interse
tion of a�nite subset of 
losed halfspa
es. If it is bounded, it is a 
onvex polytope.De�nition 7 (
ell). A 
ell is the interse
tion of a �nite set of �ats and open halfspa
es. And thus,equivalently, it is the relative interior of a 
onvex polyhedron. If R ⊂ E, we denote cell(R) the relativeinterior of the 
onvex hull of R.De�nition 8 (simplex). A simplex is cell(R) where R is a set of a�nely independent points.
• A 2-dimensional simplex is the interior of a triangle.
• A 3-dimensional simplex is the interior of a tetrahedron.De�nition 9 (
ir
umsphere). A 
ir
umsphere of a set R ⊂ E is a sphere S of E su
h that R ⊂ S.De�nition 10 (supporting halfspa
e). Let C be a 
onvex subset of E. A hyperplane H supports C if

H ∩ C 6= ∅ and C is 
ontained into one of the 
losed halfspa
es de�ned by H.Lemma 2.1. Let C  E be a 
onvex subset of E. If H is a supporting hyperplane of C, then everypoint of H ∩ C is a frontier point of C.Proof: Let H be a supporting hyperplane of C of equation φ(x) = α. Consider v ∈ E su
h that
∀x ∈ E φ(x) = 〈x|v〉.Consider a ∈ H ∩ C. We may assume that ∀x ∈ C φ(x) = 〈x|v〉 ≥ α. If a does not belong to theboundary of C, ∃ε ≥ 0, B(a, ε) ⊂ C so for any λ > 0 small enough, a− λv ∈ C and

α ≤ φ(a− λv) = 〈a|v〉 − λ‖v‖2 < 〈a|v〉 = αwhi
h yields a 
ontradi
tion. Consequently a ∈ ∂C. �4



Corollary 2.2. Every point of the boundary of a 
onvex subset of E belongs to one of its supportinghyperplanes.Proof: The proof is straightforward using the same approa
h as for the previous lemma. �Lemma 2.3. If C is a non empty 
losed 
onvex subset of E, distin
t of E, then every point of theboundary ∂C belongs to a supporting hyperplane of C.Proof: a ∈ ∂C ⇒ ∀k ∈ N∗, ∃xk ∈ B
�
a, 1

k

�
, xk /∈ C. We denote yk = pC(xk) the proje
tion of xk on C,

zk = xk−yk

‖xk−yk‖
. Owing to the 
hara
terization of the proje
tion on a 
losed 
onvex subset, we have
∀z ∈ C, 〈xk − pC(xk), xk − z〉 = |xk − pC(xk)|

2 −

≤0z }| {
〈xk − pC(xk), z − pC(xk)〉

≥ |xk − pC(xk)|2 > 0 be
ause xk /∈ C.Every ve
tor zk lying on the unit sphere of E (whi
h is 
ompa
t), one 
an extra
t a subsequen
e of zφ(k)that 
onverges to a ve
tor v, with |v| = 1. As (xk)1≤k 
onverges to a, by 
ontinuity of pC and of thes
alar produ
t, we have
∀z ∈ C, 〈v, a− z〉 = lim

k→+∞
〈zφ(k), xφ(k) − z〉 ≥ 0.In other words C is 
ontained in the halfspa
e {z ∈ E, 〈v, a − z〉 ≥ 0}. Moreover, as a is in the
orresponding hyperplane H , H is a supporting halfspa
e of C. �De�nition 11 (fa
e). A fa
e of a 
onvex polyhedron P is the relative interior of the interse
tion of ahyperplane supporting P with the 
losure of P .Proposition 2.4. Let P be a 
onvex polyhedron, a fa
e of P is a 
ell, and a fa
e of a fa
e of P is a fa
eof P .De�nition 12 (k-fa
e). A k-fa
e is a a fa
e whose a�ne 
losure has dimension k.De�nition 13 (
ell 
omplex). A 
ell 
omplex is a �nite 
olle
tion of pairwise disjoint 
ells so that thefa
e of every 
ell is in the 
olle
tion.De�nition 14 (opposite k-fa
es). Two distin
t k-
ells of a 
ell 
omplex are opposite if they have a
ommon (k − 1)-fa
e.De�nition 15 (triangulation). Let S be a �nite point set of E. A triangulation T of S is a 
ell 
omplexwhose union is the 
onvex hull of S and whose set of 0-
ells is S.De�nition 15 is a non standard de�nition be
ause 
ells are not required to be simpli
es. This formalismis due to Steven Fortune [4℄.De�nition 16 (proper triangulation). A proper triangulation is a triangulation whose all 
ells aresimpli
es.Any triangulation 
an be 
ompleted to a proper triangulation by subdividing non simpli
ial 
ells.2.1 Voronoi diagrams and Delaunay triangulationsVoronoi diagramLet E be a d-dimensional Eu
lidean spa
e, and S a �nite subset of E. In the following, elements of Swill be 
alled sites.De�nition 17 (Voronoi 
ell). For a nonempty subset of S, R ⊂ S, the Voronoi 
ell of R, denoted V (R)is the set of all points in E that are equidistant from all sites in R, and 
loser to every site of R than toany site not in R.Proposition 2.5. • Clearly, is r ∈ S, V ({r}) is the set of all points stri
tly 
loser to r than toany other site. In parti
ular, it is the interior of the Voronoi slab asso
iated to r in S. (See thede�nition of a Voronoi slab in Se
tion 1.) 5



• V (R) may be empty.
• Any point of E lies in V (R) for some R ⊂ S.De�nition 18 (Voronoi diagram). The Voronoi diagram V is the 
olle
tion of all nonempty Voronoi
ells V (R) for R ⊂ S.Delaunay triangulationDe�nition 19 (Delaunay 
ell). If R ⊂ S, and V (R) is a non empty Voronoi 
ell, then the Delaunay
ell D(R) is cell(R).De�nition 20 (Delaunay triangulation). The Delaunay triangulation D of S is the 
olle
tion of Delau-nay 
ells D(R), where R varies over subsets of S with V (R) non empty.Proposition 2.6 (Empty 
ir
umsphere property). For R ⊂ S, cell(R) is a Delaunay 
ell if and only ifthere is is a 
ir
umsphere of R that 
ontains no site of S\R in its interior.Proof: Su
h a 
ir
umsphere 
an be obtained with 
enter an point in the Voronoi 
ell V (R). �PSfrag repla
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Figure 1: Voronoi diagram and Delaunay triangulation of a data set S of size 10. We have C ∈
VS({s1, s2}). So C is the 
enter of an empty 
ir
umsphere of {s1, s2}. The point C123 is the 
enter ofthe 
ir
umsphere of the Delaunay triangle {s1, s2, s3}.Theorem 2.7. Let S be a set of n points in E with Voronoi diagram V and Delaunay triangulation D.Then1. V is a 
ell 
omplex that partitions E.2. D is a triangulation of S.3. V and D are linked with the following duality relation:For R,R′ ⊂ S, V (R) is a fa
e of V (R′) if and only if D(R′) is a fa
e of D(R).4. V (R) is unbounded if and only if every site of R is on the boundary of the 
onvex hull of S.We refer to [4℄ for a detailed proof.
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Lo
alityDe�nition 21 (lo
ally Delaunay). We 
onsider two opposite d-
ells cell(R) and cell(R′) in a triangula-tion T with 
ir
umspheres C and C′. cell(R) and cell(R′) are lo
ally Delaunay if R′\R is outside of C.This is equivalent to R\R′ outside of C′.A triangulation is lo
ally Delaunay if every pair of opposite d-
ells is lo
ally Delaunay.Lemma 2.8 (Delaunay and lo
ally Delaunay). A triangulation is Delaunay if and only if it is lo
allyDelaunay.We refer to [4℄ for a detailed proof.De�nition 22 (General position). Let S be a nonempty �nite set of sites in E. S is in general positionif no d+ 1 points of S are a�nely dependent and if no d+ 2 points of S lie on a 
ommon sphere.De�nition 23 (In
ir
le list). In the following, if S is a �nite nonempty set of sites, D is a Delaunaytriangulation of S and x ∈ E is a settle point, we 
all in
ir
le list and denote ICLD(x) the set of d-
ellsof D whose 
ir
umsphere 
ontains x.If S is in general position, no Delaunay 
ell of S is degenerate. Every 
ell of the triangulation is a simplexand for any R ⊂ S, V (R) has dimension d+ 1− |R|.Computing the Delaunay triangulation and the Voronoi diagramWhereas the Voronoi diagram was de�ned before the Delaunay triangulation, it has been re
ognizedthat it is easier to devise algorithms in terms of Delaunay triangulation, espe
ially be
ause of the lo
alityproperty 2.8.A 
ommon data stru
ture for Delaunay triangulations is a graph stru
ture where ea
h simplex is a�node�. The node 
ontains the indi
es of the d+ 1 sites of the simplex and the pointers to the adja
entsimpli
es. Null pointers are used when the simpli
es lie on the boundary of the triangulation. Cells oflower dimension are not dire
tly represented in the graph stru
ture. Another 
onvenient 
onvention isthat the kth pointer stored in the node 
orresponds to the fa
et obtained by deleting the kth site in thenode. Moreover the order is 
hosen so that the orientation of every simplex in the triangulation remainsalways positive.Here, we present the prin
iples of in
remental algorithms for Delaunay triangulations. In this kind ofalgorithms, sites are added one by one, and the Delaunay triangulation is modi�ed to in
lude ea
h newsite. Many other algorithms have been designed for 
omputing the Delaunay triangulation, espe
iallyin dimension 2. Moreover, 
omputing the Delaunay triangulation of the Voronoi diagram in the one-dimensional 
ase simply amounts to sorting the data set. An advantage of in
remental algorithms isthat they are valid in any dimension. Moreover, for another purpose in the following, we will need a newalgorithm (the friend node algorithm presented in Se
tion 5) that requires a stage whi
h is very similarto the insertion of a new point in the Delaunay triangulation. Hen
e we will fo
us here on in
rementalalgorithms.Let S = (s1, · · · , sN ) be a nonempty �nite set of sites of E of 
ardinal N . We de�ne the sets Sk :=
(s1, · · · , sk) for k ∈ {1, · · · , N}. Now, for a settled i < N , let us 
onsider Di the Delaunay triangulationof Si. We inspe
t the situation of si+1 with respe
t to the Delaunay triangulation Di. From this analysis,the Delaunay triangulation will be modi�ed lo
ally to build a new Delaunay triangulation Di+1 of Si+1.When all the sites of S will be pro
essed, we will have the 
omplete Delaunay triangulation D of S.Three situations 
an o

ur, if S is in general position:1. si+1 lies in the interior 
onvex hull of Si.2. si+1 does not lie in any 
ir
umsphere of any simplex of Di.3. si+1 lies outside of the 
onvex hull of Si but belongs to a 
ir
umsphere of a simplex of Di.
(1) In the �rst situation, let denote S := ICLDi

(si+1) and F1, · · · , Fp the external fa
es of S of anydimension k < d. We 
an show that the 
ell 
omplex de�ned by
Di+1 := (Di\S) ∪

�
cell(Fj , si+1)j , 1 ≤ j ≤ p

©
∪
�
{si+1}

©7



is the Delaunay triangulation asso
iated to Si+1. In a more general setting, we have the followingproperty:Proposition 2.9 (star-shaped in
ir
le list). Let S be a nonempty �nite set of sites of E and x ∈ E thatlies on the 
onvex hull of S. Consider C the union of the d-
ells of ICLD(x) and of all its fa
es. Then
C is star-shaped from x, that is for any point p ∈ C, [x, p] ⊂ C.
(2) The se
ond situation is the simplest. If F1, · · · , Fp are the external fa
es of the triangulation Di (ofany dimension k < d) that are visible from si+1. We 
an show that the 
ell 
omplex de�ned by

Di+1 := Di ∪
�
cell(Fj , si+1)j , 1 ≤ j ≤ p

©
∪
�
{si+1}

©is the Delaunay triangulation asso
iated to Si+1.
(3) In the third situation, if we denote S = ICLDi

(si+1) the set of elements of Di whose 
ir
umsphere
ontains si+1 and F1, · · · , Fp are the external fa
es) of this set whi
h are not visible from si+1 and
Fp+1, · · · , Fp+q are the external fa
es of Di that are not fa
es of elements of S and that are visible from
xi+1. We 
an show that the 
ell 
omplex de�ned by

Di+1 := (Di\S) ∪
�
cell(Fj , si+1)j , 1 ≤ j ≤ p

©
∪
�
{si+1}

©is the Delaunay triangulation asso
iated to Si+1.The �rst triangulation Dd+1 is made of a simple simplex de�ned by the d+ 1 �rst inserted points.One important modi�
ation of the in
remental algorithm 
onsists in inserting sites in a random order.Its expe
ted running time is better than the worst 
ase running time for the in
remental algorithm.The worst 
ase 
omplexity of 
omputing the Delaunay triangulation of n points in a d dimensionalEu
lidean spa
e E is O �n log(n) + n⌈
d
2 ⌉
�.On the pra
ti
al implementationThe �rst step is the Lo
alization. It 
onsists in �nding whether the new site x is in the 
onvex hull of Sor not, and if it is the 
ase, in what Delaunay 
ell of the triangulation TS x lies. A survey on lo
alizationmethods is available in [2℄. When x is inside of the 
onvex hull of S, the lo
alization pro
edure returnthe index of the the Delaunay 
ell where it lies. This 
orresponds to the situation (1). When x is outsideof this 
onvex hull, the lo
alization returns a Null pointer. This 
orresponds to situations (2) and (3).The se
ond step 
onsists in �nding the list of the Delaunay 
ells whose 
ir
umsphere 
ontains x (thein
ir
le list). In the situation (1), this list 
ontains at least the Delaunay 
ell where x is lo
ated. Owingto the Proposition 2.9, we know that the union of these Delaunay 
ells is star-shaped so that it 
an bedetermined lo
ally by testing 
onne
ted 
ells in the graph stru
ture presented above.The last step 
onsists in deleting the Delaunay 
ells of the in
ir
le list and 
onne
ting the new site to theexternal fa
es of the in
ir
le list or the visible fa
es of the 
onvex hull of S depending on the situation

(1), (2) or (3).3 Classi
al examples of fast nearest neighbor sear
h algorithmsin low dimensionsGiven a set of n points, {x1, · · · , xn} ⊂ E, the nearest neighbor problem is to �nd the point that is
losest to a query point q ∈ E. Many algorithms have been proposed to avoid the large 
omputational
ost of the obvious brute for
e algorithm. When one has to perform a big amount of nearest neighborsear
hes, a prepro
essing of the data set will be pro�table if it redu
es the average query time.The problem is optimally solved in the 
ase of dimension 1, where the best algorithm is, as a prepro-
essing to sort the data set by the unique 
oordinate of its points. (Approximative 
ost of O(n ln(n))).The sear
h algorithm 
onsists of a simple binary sear
h whose 
ost is ln(n)
ln(2) +O(1).In the 
ase of low dimensions, most fast sear
h algorithms still have an approximative prepro
essing
ost of O(n log(n)) and an average sear
h 
ost in O(log(n)) in low dimension. The 
riterion of 
hoi
eamong them relies on 8



• their e�e
tive speed on real data sets,
• the required memory,
• the sensitivity of the speed to the dimensionality.A �rst obvious optimization 
alled partial distan
e sear
h (P.D.S.) 
onsists of a simple modi�
ationof the brute for
e sear
h: during the 
al
ulation of the distan
e, if the partial sum of square di�eren
esex
eeds the distan
e to the nearest neighbor found so far, the 
al
ulation is aborted. This almost alwaysspeeds up the nearest neighbor sear
h pro
edure.3.1 The Kd-tree algorithmThe Kd-tree algorithm is the ar
hetype of the bran
h-and-bound nearest neighbor sear
h tree. It is verypopular be
ause of its simpli
ity.Building the tree:
• Every point of the data set is asso
iated to the root node.
• The data set is being sorted by its �rst 
oordinate. Then it is divided in two subsets of 
ardinal�

n
2

�
+ 1 or �n2 �.

• Ea
h subset is asso
iated to a 
hild node of the root node.
• The pro
ess is repeated on ea
h 
hild node re
ursively using the 
oordinate axis in a 
y
li
 order,until there are less than two points in ea
h node.Sear
hing in the tree: Let q be the query point.
• The sear
h pro
edure begins by sear
hing in what 
hild node q is (depending of its �rst 
oordinate).
• This 
hild node is then sear
hed, and the pro
ess is repeated re
ursively until a terminal node isrea
hed.
• A trivial nearest neighbor sear
h is performed in the terminal node. (Partial Distan
e Sear
hoptimization 
an be used.)
• The pro
edure moves up to the parent of the terminal node.
• If the distan
e d2 between q and the hyperplane that splits the data set is smaller than the distan
e
dmin to the nearest neighbor found so far, the other 
hild node is sear
hed.

• The pro
edure 
ontinues its way ba
k to the root node.Complexity: Ex
ept in one dimension where the sear
h 
omplexity is logarithmi
 (it amounts to abinary sear
h), the worst 
ase of the Kd-tree 
orresponds to the 
ase where every node of the tree isexplored. Then the worst 
ase 
omplexity is time exponential. The distan
es to every point is 
omputed.The 
omplexity of the prepro
essing is O(d × n log(n)).3.2 The prin
ipal axis tree algorithmThe Prin
ipal Axis Tree (PAT) is a generalization of the Kd-tree proposed by M
Names in [10℄. Insteadof using a 
oordinate axis to sort the data set, its prin
ipal axis is used at ea
h step. Moreover, thenumber of 
hild node in the tree 
an be greater than 2 at ea
h generation.Building the tree:
• Every point of the data set is asso
iated to the root node.
• The data set is being sorted by its proje
tion on its prin
ipal axis. Then it is partitioned in ncsubsets whose 
ardinality is � n

nc

�
+ 1 or � n

nc

�.9
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• Ea
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ipal axis tree.We refer here to Figure 3. We 
an improve the lower bound to the points that belong to 
hild nodes ofbrother nodes. For any point q in region 1 and x in region 2, we have d2(q, x) ≥ d2q2 + d22x. This resultis then used again to get a lower bound to points in region 3, and 4 and so on.
d22x ≥ d223 ∀x ∈ Region 3,
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hing in the tree: Let q be the query point.
• The sear
h pro
ess begins by sear
hing in whi
h 
hild node q is (by 
omputing its proje
tion onprin
ipal axis).
• This 
hild node is then sear
hed, and the pro
ess is repeated re
ursively until a terminal node isrea
hed. 10



• A partial distan
e sear
h is then performed in the terminal node.
• The pro
edure moves up to the parent of the terminal node.
• The elimination 
ondition is 
he
ked to de
ide if brother nodes have to be sear
hed or not.
• The pro
edure 
ontinues its way ba
k to the root node.Choi
e of parameter nc: For normal or uniform random data sets (and distribution of query points),best overall performan
es are obtained with nc = 7 (independently from dimensionality for d < 10).(The same optimal value is obtained by M
Names in [10℄.) In the 
ase where the data set is an optimalquantizer of those distributions, best performan
e is obtained with nc = 13.Complexity: Spa
e storage is O(n). Ex
ept in the one-dimensional setting where the sear
h 
omplexityis logarithmi
 (it 
omes to a binary sear
h), the worst 
ase of the Kd-tree 
orresponds to the 
ase whereevery node of the tree is explored. Then the worst 
ase 
omplexity is time exponential (2n 
omparisonsof 
oordinates). n distan
es are 
omputed. The 
omplexity of the prepro
essing is O(d × n log(n)).Algorithm performan
e: On a 5000 points Gaussian data set in R2, the depth of the tree is 4.
• 27 (partial) distan
es,
• 15 s
alar produ
ts,
• 9 binary sear
hesare performed in average.Why using this spa
e partitioning ? The idea is that good empiri
al performan
e of PAT are dueto the fa
t that it takes advantage of the shape of the data set. Yet obviously when both query pointdistribution and data sets lie on a smaller dimension (k < d) subspa
e of E, one retrieves the same
omplexity as when using the same algorithm on a k dimensional spa
e. This intrinsi
 dimension is oftenless than the spatial dimension of the spa
e. In a more general setting, PAT takes advantage of high
orrelations in the data set 
oordinates.However if one uses the same number of 
hild nodes nc in Kd-tree and PAT tree, we see that
• Prepro
essing time is longer for PAT than for Kd-tree.
• The �rst traversal of the tree to a terminal node is more 
ostly (proje
tions have to be 
omputed).But PAT is still faster be
ause its geometri
al partition of the spa
e �ts the data set in a more relevantway. To be pre
ise, it happens less often than one has to sear
h a brother node with PAT than withKd-tree.In [3℄, the same spa
e de
omposition was proposed for the nearest neighbor sear
h problem (but usingthe only 2 
hild node at ea
h generation). They justify the use of this de
omposition using a heuristi

riterion, a

ording to whi
h the best possible de
omposition of the data-set into two subsets for bran
hand bound nearest neighbor sear
h is to split the data set with respe
t to its proje
tion on the prin
ipalaxis.4 A new quantization based tree algorithmAs we have seen in previous se
tions, a good spa
e de
omposition that �ts to the data distribution maylead to a faster bran
h and bound nearest neighbor sear
h algorithm, if less brother nodes have to beexplored. The traversal of the tree 
an be a little more expensive if it is 
ompensated by the gain due tothe fa
t that less nodes are explored.Prin
ipal 
omponent analysis and optimal quantization are two types of proje
tion of a probabilitydistribution. Similar inertia de
ompositions hold in the quadrati
 
ase (Huyghens lemma).PAT is based on a re
ursive spa
e de
omposition based on the prin
ipal 
omponent analysis of theunderlying data set. The initial idea here is to design a bran
h and bound algorithm based on a re
ursivequantization of the empiri
al distribution of the underlying data set.11



4.1 The 
rude quantization tree algorithmBuilding the tree:
• Every point of the data set is asso
iated to the root node.
• The data set is being partitioned into nc subsets 
orresponding to the Voronoi 
ells of an optimizedquantizer of the empiri
al distribution of the data set.
• Ea
h subset is asso
iated to a 
hild node of the root node.
• The pro
ess is repeated on ea
h 
hild node re
ursively until there are less than a 
ertain numberof points in ea
h node.Some other 
omputations are done during the prepro
essing that will be detailed further on.Remark. One noti
es that the resulting sear
h tree is not balan
ed and may have some longer bran
hes.Sear
hing in the tree: Let q be the query point.
• By performing trivial nearest neighbor resear
hes in the node's quantizer the sear
h algorithmtraverses the tree to a terminal node where a trivial partial distan
e sear
h is performed.
• The pro
edure moves up to the parent of the terminal node.
• The elimination 
ondition, (developed further on) is 
he
ked to de
ide whether brother nodes haveto be sear
hed or not.
• The pro
edure 
ontinues its way ba
k to the root node.Consisten
y of the spa
e de
omposition:Implementing only the way down to the terminal node (with nc = 7 in both prin
ipal axis tree andquantization tree), we naturally do not obtain always the index of the nearest neighbor. But we havenoti
ed that the result is more often the right one with the quantization tree than with the prin
ipalaxis tree.For instan
e, in dimension 2, on a 5000 points Gaussian data set, on a million Gaussian query points,we noti
es:
• 56 per
ent of false results with PAT.
• 16 per
ent of false results with the quantization tree.Similar results are obtained with other values of the parameters and other data set distributions. Thisempiri
al test makes us reasonably optimisti
 about the performan
e of a bran
h and bound tree basedon this de
omposition.Still, the 
ost of the way through the sear
h tree is more expansive with the quantization tree (asdes
ribed above).
• For the �quantization tree�, we have to perform trivial nearest neighbor sear
h to �nd the right
hild node.
• For �prin
ipal axis tree�, we only 
ompute a proje
tion and perform a binary sear
h.Moreover, it was proved in [13℄ that in the 
ase of Gaussian distributions, the a�ne subspa
e spannedby stationary quantizers 
orrespond to the �rst prin
ipal 
omponents of the 
onsidered Gaussian dis-tribution. (This result, extended to the in�nite dimensional 
ase in [8℄ allows to e�
iently 
omputeoptimal quadrati
 quantizers of bi-measurable Gaussian pro
esses.) Hen
e, in this 
ase, this shows thatthe quantization tree with two bran
hes at ea
h generation is related to the prin
ipal axis tree.First elimination 
ondition If the 
enter of the Voronoi 
ell 
orresponding to the 
urrent node is A, the�rst rough method to de
ide whether a brother node with 
enter B has to be explored or not is 
omputethe distan
e d2 of the query point Q to the Leibniz halfspa
e H(B,A). Then the node 
orrespondingto point B is explored if d2 is smaller than the distan
e to the nearest neighbor found so far, d1. We12



have d2 = AB
2 − AQ cosα and QB2 = QA2 + AB2 − 2AQAB cosα so that ⇒ cosα = QA2+AB2−QB2

2AQAB
.This yields d2 = QB2−QA2

2AB
. Hen
e, the 
omputation of the distan
e to the Leibniz halfspa
e requiresone subtra
tions QA2−QB2, (QA2 and QB2 
an be 
omputed during the sear
h in the quantizer in theparent node), and one multipli
ation by 1

2AB
. ( 1

2AB

an be 
omputed during the prepro
essing.)Then, it is 
lear that the nearest brother node 
orrespond to the se
ond nearest neighbor in the quantizer,and the se
ond nearest to the third nearest neighbor, and so on. Hen
e, brother nodes have to be exploredin the order de�ned by the distan
es of its 
enters the query point.We 
an also use the same optimization of the lower bound proposed by M
Names in [10℄ and presentedin Se
tion 3.2. Referring to Figure 4, the lower bounds di are re
ursively in
remented when exploringbrother nodes.
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Figure 4: Optimization of the elimination 
ondition for the quantization tree d2 ≥ d21 + d22 + d23.Performan
e of this �rst quantization tree algorithm. This �rst algorithm has been implementedand its empiri
al performan
es has been 
ompared to the two previously exposed PAT and Kd-tree interms of empiri
al performan
es.Intermediate performan
es between our implementations of Kd-tree and PAT were obtained in smalldimensions. Although, as we will see further in empiri
al tests, it seems to take better the in
rease ofdimensionality. The prepro
essing time, that requires small quantizer 
omputations is also more 
ostlythan both PAT and Kd-tree.4.2 Optimizations for the quantization treeTo redu
e the average query time, we are now proposing a new optimization pro
edure whi
h redu
esthe number of brother nodes to be 
he
ked.
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Let us 
onsider the Voronoi diagram plotted in Figure 5. In this �gure, we obviously know that whenthe query point is in a 
ell A, its nearest neighbor 
annot be in 
ell B, be
ause 
ell B is �hidden� by
loser 
ells. One has to give a pre
ise mathemati
al sense to �hidden� in this senten
e. However, in thequantization tree as it has been des
ribed, the distan
e of query point to H(a, b) has to be 
omputed.A �rst idea is to 
ompute for ea
h 1 ≤ i ≤ nc a list of �friends� among brother nodes in whi
h thenearest neighbor 
an be when q is in 
ell i.This list has to be large enough to ensure that it 
ontains the nearest neighbor but as small as possiblein order to redu
e the 
omputations of elimination 
onditions.As 
on
erns the 
hoi
e of the parameter nc, we have to take in 
onsideration that in
reasing nc makesthe depth of the tree smaller but also makes the nearest neighbor sear
h slower for ea
h generation ofthe sear
h tree.How 
an we obtain a friend Voronoi 
ells list? The �rst observation about obtaining su
h a friendlist is that it is not a simple problem. Indeed, this list is a priori not redu
ed to adja
ent 
ells in theVoronoi diagram. Moreover, in some 
ases, the minimal friend list 
an be quiet large. So is the 
ase forunbounded Voronoi 
ells for example.
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Figure 6: In these 
ases, the nearest neighbor of the query point q may be p although p is not in anadja
ent Voronoi 
ell.A pro
edure to obtain su
h a friend Voronoi list is proposed in Se
tion 5.5 Some optimizations for the quantization tree algorithmIn Se
tion 2.1, basi
 de�nitions about Voronoi diagrams and Delaunay triangulations that are prerequi-sites to this se
tion ahev been re
alled.Remark (Voronoi slabs and Voronoi 
ells). From their respe
tive de�nitions, one 
an easily dedu
e thefollowing properties:
• Let S ⊂ E be a �nite set of sites, let C be an asso
iated Voronoi partition and 
onsider s ∈ S.Then it is 
lear that V ({s}) =

◦üslabC(s).
• The points of the Voronoi 
ells V (R) with R ⊂ S and cardR > 1 belong to the boundaries ofVoronoi slabs.
• As a 
onsequen
e, for s ∈ S, as the boundary V ({s}) is 
onstituted with its fa
es of lower dimen-sions, previous remark yields V ({s}) = slab(s) and ∂ slabS(s) = ∂VS({s}).14



Notations: In the following of this se
tion, if S ⊂ E is a �nite set of sites in E, one will denote TSthe Delaunay triangulation of S, DGS the Delaunay graph of S, VS its Voronoi diagram. For R ⊂ S,
VS(R) will represent the Voronoi 
ell of R in S. If CS is a Voronoi partition asso
iated to S, and s ∈ S,
slabS(s) will denote the Voronoi slab asso
iated to S is the Voronoi partition C.De�nition 24 (Leibniz halfspa
e). For (a, b) ∈ E2 let us denote H(a, b) :=

n
x ∈ Rd||x− a| ≤ |x − b|

othe Leibniz halfspa
e asso
iated to (a, b).Proposition 5.1. An obvious property is if S is a �nite set of sites of E, and p ∈ S,
VS({p}) =

\
s∈S,s6=p

H(p, s).Proposition 5.2. If S is a �nite set of sites of E, and p ∈ S, VS({p}) =
T

{s,p}∈DGS

H(p, s).Lemma 5.3. Let S ⊂ E be a nonempty �nite set of sites in E and x ∈ E\S. Consider s ∈ S, thefollowing assertions are equivalent:1. {x, s} ∈ DGS∪{x}.2. VS({s}) ∩ VS∪{x}({x}) 6= ∅.3. VS({s}) ∩H(x, s) 6= ∅.Proof: See Figure 5 for an illustration of the proof.
• (1. ⇒ 2.) Assume that {x, s} ∈ DGS∪{x} then by de�nition, it is equivalent to VS∪{x}({x, s}) 6= ∅.
VS∪{x}({x, s}) is (d−1)-fa
e of VS∪{x}(x). Moreover, by de�nition of Voronoi 
ells, VS∪{x}({x, s}) ⊂
VS({s}), whi
h is open. As a 
onsequen
e, ∀y ∈ VS∪{x}({x, s}), ∀ε > 0, B(y, ε) ∩ VS∪{x}(x) 6= ∅.And for small enough ε, B(y, ε) ⊂ VS({s}). We 
an 
on
lude that VS({s}) ∩ VS∪{x}({x}) 6= ∅.

• (2. ⇒ 3.) is obvious owing to Proposition 5.1.
• (3. ⇒ 1.) If y ∈ VS({s}) ∩H(x, s), let us show that VS∪{x}({x, s}) 6= ∅.Consider the segment [s, y]. By 
onvexity, [s, y] ⊂ VS({s}). Thus every point of [s, y] is 
loser to sthan to any other point of S. On the other hand, it 
an either be 
loser to s than to x, or 
loserto x than to s or at the same distan
e.We now de�ne the appli
ations f : [0, 1] → [s, y] ⊂ E by f(λ) = λs + (1 − λ)y and ∆ : E → R by
∆(p) = d(p, x)− d(p, s).
∆ ◦ f is a 
ontinuous fun
tion with ∆ ◦ f(0) > 0, ∆ ◦ f(1) < 0. The intermediate value theoremshows that there exists λ∗ su
h that ∆ ◦ f(λ∗) = 0 and thus f(λ∗) ∈ VS∪{x}({x, s}). �The �rst modi�
ation made in the quantization tree algorithm is to assume that the points of thequantizer at ea
h generation are points of the underlying 
odebook Γ. (In order to ful�ll this requirement,we proje
t an optimal quantizer onto the 
odebook.)Corollary 5.4. Let Γ = {Γ1, · · · ,Γn} be a 
odebook of E. S = {s1, · · · , sp} ( Γ be subset of Γ.Let ProjΓ be a nearest neighbor proje
tion on Γ. Γ is being partitioned into p subsets Γ1, · · · ,Γp with

Γi = Γ ∩ slabS(si), by their nearest neighbor proje
tion on S.Consider q ∈ E. If q ∈ slabS(s) and t = ProjΓ(s) then {t, s} ∈ DGS∪{t}.Proof: This is a straightforward 
onsequen
e of the previous lemma. �Notation: Let S be a set of sites in E. For a point t in E, we denote PIS(t) =
n
s ∈ S, {s, t} ∈ DGS∪{t}

o.The notation PI stands for �Pseudo-Insertion�.From an algorithmi
 viewpoint, the Delaunay graph of S being 
omputed, PIS(t) stands for the setsof points in S, that are 
onne
ted to t when updating the Delaunay graph to take a

ount of this newpoint. 15
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Figure 7: If the query point q lies on the dark gray region H(x, s)∩ VS({s}) its nearest neighbor may be
x. Implementing a pro
edure that 
omputes PIS(t) is very similar to the insertion pro
edure of point tin TS.First friend node algorithm: This leads to a �rst method to 
ompute a friend list:For every point p of the underlying 
odebook,

• Compute s = ProjS(p) and PIS(p).
• Then for every point s′ ∈ PIS(p), insert s in the set of friends of node s′.This method gives a �rst algorithm to 
ompute friend list. Still, when the data set is large, it is veryexpensive be
ause one has to deal with all the points of the data set.In fa
t it is possible to 
ompute an a

eptable friend list thanks to the same result 5.3 without usingthe points of the underlying data set.Fast friend node algorithm: In this se
tion, another method to 
ompute friend node lists is devisedwhi
h does not need to deal with the 
omplete underlying data set but only the underlying 
odebook.When keeping the same notations, the prin
iple of the method is to 
ompute for every slabS(s), s ∈ S,of the Voronoi partition CS , the set UPIS(s) :=

S
p∈slabS(s)

PIS(p). It is the union of all the pseudo-insertionsof points of slabS(s). If one is able to 
ompute this set, the resulting friend nodes algorithm simplywrites:For every point s ∈ S,
• Compute UPIS(s).
• Then for every point s′ ∈ UPIS(s), insert s in the set of friends of node s′.The question is: how 
an we 
ompute UPIS(s)?Lemma 5.5. With the same notations, one has UPIS(s) =

S
p∈∂ slabS(s)

PIS(p). In other words, we have to
he
k points of the boundary ∂ slabS(s) of slabS(s).Remark. Let us re
all that, thanks to Proposition 2.5, (∂ slabS(s) = ∂VS({s}).Proof: Consider x ∈ slabS(s) su
h as s′ ∈ PIS(x). Let us de�ne x∗, su
h that {x∗} = [x, s′] ∩ ∂VS(s).16



• One has H(x∗, s′) ⊃ H(x, s′). So VS({s′}) ∩ H(x∗, s′) ⊃ VS({s′}) ∩ H(x, s′), hen
e VS({s′}) ∩
H(x, s′) 6= ∅ ⇒ VS({s′}) ∩ H(x∗, s′) 6= ∅ that is equivalent to s′ ∈ PI(x∗) thanks to the Lemma5.3.

• Finally, ∀x ∈ slabS(s), ∀s′ ∈ PIS(x), ∃x∗ ∈ ∂ slabS(s) su
h that s′ ∈ PIS(x
∗). �Remark. As there are not a �nite number of sites on the boundaries, this does not give an e�e
tivemethod for 
omputing UPIS(s) yet.As seen in Se
tion 2.1, 
omputing the set PIS(x) 
orresponds almost to the same algorithm as theinsertion pro
edure in an in
remental triangulation algorithm, that is:

• Lo
alization of x in the triangulation,
• Computation of the set ICL(x),
• UIS(x) is the set of points that belong to a 
ell of ICL(x) plus, if x is outside the 
onvex hull of
S, the points of the external fa
es of TS that are visible from x.Lemma 5.6. Let S be a non empty �nite set of sites in E. We 
onsider the 
ir
umsphere C of Delaunay

d-
ell of the Delaunay triangulation TS. We denote c its 
enter and r its radius. Let s be a site of S.If VS({s}) ⊂ C 6= ∅ then c+ r
|s−c|(s− c) ∈ VS({s}).The proof is straightforward. This leads to an algorithm to 
ompute sets (UPIS(s))s∈S .

• For every Delaunay d-
ell D of TS� Compute the 
enter c and radius r of its 
ir
umsphere.� For every site s ∈ S that is not in D, 
ompute p := c + r s−c
|s−c| ∈ VS({s}), and 
he
k if thesite s is the nearest neighbor of p in S. If so is the 
ase, then the points of the Delaunay

d-
ells D belong to UPIS(s).
• Then deal with unbounded Voronoi 
ells:� For every external fa
e F of the Delaunay triangulation, 
ompute a normal ve
tor uF dire
tedtoward the exterior of the 
onvex hull of S.� For two distin
t external fa
es F1 and F2 of the Delaunay triangulation, if 〈uF1

, uF2
〉 > 0then for every (s1, s2) ∈ F1 × F2, s1 ∈ UPIS(s2) and s2 ∈ UPIS(s1).In Figure 8, we present some friend Voronoi lists in the 2-dimensional 
ase.6 Test with real data setsTo perform the following tests, the quantization tree algorithm and the friend-node optimization havebeen implemented in C++. Be
ause of the additional feature related to 
omputational geometry thatwe needed, as the pseudo-insertion pro
edure, we had to implement a Delaunay triangulation. All the�gures presented in this arti
le were generated with this implementation of the Voronoi diagram withwhi
h we performed the following tests.6.1 Tests on Gaussian and uniform data setsIn Tables 9, 10 and 11, we report the exe
ution time for 10 millions nearest neighbor queries on data-sets of size 5000 generated with independent Gaussian pseudo random variables and with a uniformdistribution on the hyper
ube. The best overall performan
es were obtained with nc = 35 
hildren bynode for the quantization tree. The tests were performed with an Intel Pentium Dual CPU at 2GHz. Wenoti
ed that in dimension d = 2 and d = 3, we had intermediate performan
es between the �prin
ipal axistree� and the Kd-tree algorithms. In dimension 4, the performan
e of the �prin
ipal axis tree� and the�quantization tree� are 
lose one to ea
h other. Finally, it seems that the quantization tree has a better17
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Figure 8: Examples of friend Voronoi 
ells in a two-dimensional Voronoi diagram in the 
ase of a boundedVoronoi 
ell (left) and in the unbounded 
ase (right). In both 
ase, the dark gray region is the 
onsideredVoronoi 
ell and the light gray regions are the friend Voronoi 
ells.behaviour in dimensions greater than 5 where it signi�
antly outperforms the two other implementedmethods.
d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8Quantization tree 1.76s 2.75s 5.35s 8.93s 15.99s 28.06s 52.31sPrin
ipal axis tree 1.21s 1.86s 4.49s 10.87s 20.14s 41.56s 82.30sKd-tree 1.88s 3.71s 8.54s 17.13s 31.06s 60.67s 118.93sFigure 9: Exe
ution time of 10 millions random queries on a data set of 5000 points, generated with aGaussian pseudo random generator.
d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8Quantization tree 2.59s 3.87s 6.46s 11.90s 27.54s 45.78s 84.63sPrin
ipal axis tree 1.33s 2.44s 4.94s 12.78s 41.02s 62.33s 119.88sKd-tree 2.82s 5.20s 11.32s 24.20s 47.51s 87.61s 164.52sFigure 10: Exe
ution time of 10 millions random queries on a data set of 10000 points, generated witha Gaussian pseudo random generator.
d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8Quantization tree 1.62s 2.30s 3.75s 6.47s 10.33s 15.91s 32.62sPrin
ipal axis tree 0.74s 1.52s 2.81s 6.71s 16.53s 28.03s 47.53sKd-tree 1.54s 2.82s 5.46s 10.64s 18.50s 31.60s 55.71sFigure 11: Exe
ution time of 10 millions random queries on a data set of 5000 points, generated with auniform pseudo random generator.Remark (Computational 
ost or the prepro
essing for the friend 
ell algorithm). An important fa
t thatwe have experien
ed is that, in higher dimensions, the friend 
ells list be
omes bigger and there is no18



more 
ompetitive advantage in using it in dimension higher than 7 (when having less than 30 bran
hesper generation in the quantization tree). Moreover, as it requires to 
ompute Delaunay triangulationsduring the prepro
essing, whose 
omplexity exponentially in
reases with the dimension, the 
omputational
ost of the friend 
ell prepro
essing makes it useless in higher dimensions.The author is very grateful to Gilles Pagès (LPMA - Université Paris VI) for his helpful remarks and
omments, and to Johan Mabille (Natixis) for his advi
es 
on
erning the pra
ti
al implementation.Referen
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