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IntrodutionThe problem of nearest neighbor searh, also known as the post o�e problem [7℄ has been widelyinvestigated in the area of omputational geometry. It is enountered for many appliations, as patternreognition and vetor quantization.The post-o�e problem has been solved near optimally for the ase of low dimensions. Algorithmsdi�er on their pratial e�ieny on real data sets. For large dimensions, most solutions have a omplexitythat grows exponentially with the dimension, or require a bigger query time than the obvious brute forealgorithm. In fat, it has been notied that, if n is the size of the data set and d is the dimensionality,the best hoie beomes linear searh when d > K log(n) for some positive onstant K whih dependson the hosen algorithm. This e�et is known as the urse of dimensionality.As onerns the appliation to (Voronoi) vetor quantization, nearest neighbor projetions are re-ognized to represent the ritial part of most odebook optimization algorithms. In this ase, the bigamount of nearest neighbor searhes we have to do shows that a preproessing of the data-set will bepro�table if it redues the average query time. Still, in some partiular ases, the odebook is hosen sothat nearest neighbor searh is performed easily, (as when dealing with produt quantization). Moreover,non-Voronoi quantization methods an also be designed in order to simplify the projetion proedurewhile preserving some important properties of optimal quantizers, as the stationarity in the quadratiase.Let us also point out that a �eld reently emerged under the name of dual quantization [11, 12℄. Inthis ontext, the nearest neighbor searh, i.e. the loation of a point in a Voronoi partition, is replaedby the analogous proedure in the Delaunay triangulation. This loalization proedure in Delaunaytriangulations have been widely investigated in the pratial viewpoint in terms of redution of itsomputational omplexity. We refer to Devillers, Pion and Teillaud for a review on this subjet [2℄.Many nearest neighbor searh algorithms rely on a reursive partitioning of the data-set resulting ina searh-tree data struture [1, 10℄. The method proposed by MNames in [10℄ improved the lassialKd-tree algorithm [1℄ by taking advantage of the shape of the data-set thanks to prinipal omponentanalysis. The �prinipal axis tree� algorithm performs muh faster than the lassial Kd-tree when theoordinates of the data-set are orrelated and it seems to take better the growth of dimensionality.In our ase, the proposed algorithm uses vetor quantization as a lustering method to perform thisreursive partitioning and to take advantage of the geometry of the data-set. It is lassial bakgroundthat when dealing with empirial distributions, the quadrati vetor quantization problem is equivalentto the redution of the intralass inertia of the related partition, and the spei�ation of the lassialLloyd algorithm to this ase turns out to be the k-means lustering algorithm.We will see that one draw-bak of this kind of partition is that, as other tree-based searh algorithms,after determining the losest neighbor of a query in a leaf-node of the tree, the proedure has to moveup to the parent node and determine whether brother nodes have to be explored or not. Unlike Kd-treeand �prinipal axis tree�, our so-alled �quantization tree� an't eliminate several brother nodes by witha single test. This is the motivation for the development of our friend node algorithm.The paper is organized as follows. Setion 1 is devoted to lassial de�nitions and notations relatedto vetor quantization. The link with the lassi�ation problem is pointed out. Setion 2 realls in mindsome de�nitions of omputational geometry whih will be useful in the sequel. As both the �elds of vetorquantization and algorithmi geometry deal with the notion of Voronoi diagram, we apply ourselves todistinguish the orresponding de�nitions and notations. Setion 3 makes a brief presentation of boththe Kd-tree [1℄ and �prinipal axis tree� [10℄ algorithms. We deal with some optimizations that will beappliable with our quantization tree. Setion 4 presents the �rude� quantization tree, i.e. withoutusing any friend node algorithm. It is presented as the natural ounterpart these two branh and boundalgorithms with a quantization based partition of the data-set. Setion 5 presents the friend nodealgorithm whih was disussed above. Finally, the last setion provides some performane omparisonsbetween the di�erent algorithms on various data-sets.1 Vetor quantization and Voronoi tessellationsWe onsider (Ω,A,P) a probability spae and E a (real) �nite dimensional Eulidean spae. The prinipleof a random variable X taking its values in E is to approah X by a random variable Y taking a �nite2



number of values in E.De�nition 1 (quantizer). In this surrounding, the disrete random variable Y is a quantizer of X.If X ∈ Lp, the quantization error is the Lp norm of |X − Y |, where | · | denotes the Eulidean norm on
E. The minimization of this error yields the following minimization problem

min{‖X − Y ‖p, Y : Ω → E measurable , card(Y (Ω)) ≤ N}. (1)De�nition 2 (Voronoi partition). Consider N ∈ N∗, Γ = {γ1, · · · , γN} ⊂ E and let C = {C1, · · · , CN}be a Borel partition of E. C is a Voronoi partition assoiated with Γ if ∀i ∈ {1, · · · , N}, Ci ⊂ {ξ ∈
E, |ξ − γi| = min

j∈{1,··· ,N}
|ξ − γj |}.If C = {C1, · · · , CN} is a Voronoi partition assoiated with Γ = {γ1, · · · , γN}, it is lear that ∀i ∈

{1, · · · , N}, γi ∈ Ci. Ci is alled Voronoi slab assoiated with γi in C and γi is the enter of the slab Ci.We denote Ci = slabC(γi). For every a ∈ Γ, W (a|Γ) is the losed subset of E de�ned by W (a|Γ) =§
y ∈ E, |y − a| = min

γ∈Γ
|y − γ|

ª
.De�nition 3 (Nearest neighbor projetion). Consider Γ ⊂ E a �nite subset of E. A nearest neighborprojetion onto Γ is an appliation ProjΓ that satis�es
∀x ∈ E,

��x− ProjΓ(x)
�� = min

γ∈Γ
|x− γ|.To be more preise, if ProjΓ is a measurable nearest neighbor projetion onto Γ, there exists a Voronoipartition C = {C1, · · · , CN} assoiated to Γ suh that ProjΓ =
NP
i=1

γi1Ci
.Proposition 1.1. Let X be an E-valued Lp random variable, and Y taking its values in the settled pointset Γ = {y1, · · · , yN} ⊂ E where N ∈ N. Set ÒXΓ the random variable de�ned by ÒXΓ := ProjΓ(X) where

ProjΓ is a nearest neighbor projetion on Γ, alled a Voronoi Γ-quantizer of X.Then we learly have ���X − ÒXΓ
��� ≤ |X − Y | a.s.. Hene X − ÒXΓ


p
≤ ‖X − Y ‖p.A onsequene of this proposition is that solving the minimization problem (1) amounts to solving thesimpler minimization problem

min {‖X − ProjΓ(X)‖p, Γ ⊂ E, card(Γ) ≤ N} . (2)The quantity ‖X − ProjΓ(X)‖p is alled the mean Lp-quantization error. When this minimum is reahed,we refer to Lp-optimal quantization.The problem of the existene of a minimum have been investigated for deades on its numerial andtheoretial aspets in the �nite dimensional ase [5℄. For every N ≥ 1, the Lp-quantization error isLipshitz-ontinuous and reahes a minimum. An N -tuple that ahieves the minimum has pairwisedistint omponents, as soon as card(supp(PX)) ≥ N . This result stands in the general ase of a randomvariable valued in a re�exive Banah spae [8℄. If card(X(Ω)) is in�nite, this minimum stritly dereasesto 0 as N goes to in�nity. The asymptoti rate of onvergene, in the ase of non singular distributionsis ruled by the Zador theorem [5℄. A non-asymptoti upper bound for the quantization error is alsoavailable [9℄.We now fous on the quadrati ase (p = 2). For a L2 random variable X , we now denote CN (X)the set of L2-optimal quantizers of X of level N and eN(X) the minimal quadrati distortion that anbe ahieved when approximating X by a quantizer of level N . A quantizer Y of X is stationary (orself-onsistent) if Y = E[X |Y ].Proposition 1.2 (Stationarity of L2-optimal quantizers). A (quadrati) optimal quantizer is stationary.The stationarity is a partiularity of the quadrati ase. In other Lp ases, a similar property involvingthe notion of p-enter ours. A proof is available in [6℄.3



De�nition 4 (Centroidal projetion). Let C = {C1, · · · , CN} be a Borel partition of E. Let us de�nefor 1 ≤ i ≤ N , Gi =

§
E[X |X ∈ Ci] if P[X ∈ Ci] 6= 0,
0 in the other ase, the entroids assoiated with X and C.The entroidal projetion assoiated C and X is the appliation ProjC,X : x →

NP
i=1

Gi1Ci
(x).Lemma 1.3 (Huyghens, variane deomposition). Let X be a E-valued L2 random variable, N ∈ N∗and C = (Ci)1≤i≤N a Borel partition of E. Consider ProjC,X =

NP
i=1

Gi1Ci
the assoiated entroidalprojetion. Then one has,

Var(X) = E
���X − ProjC,X(X)

��2�| {z }
:=(1)

+E
���ProjC,X(X)− E[X ]

��2�| {z }
:=(2)

.The variane of the probability distribution X deomposes itself as the sum of the intralass inertia
(1) and the interlass inertia (2).Proof:

Var(X) = E
���X − ProjC,X(X) + ProjC,X(X)− E[X ]

��2�
= E

���X − ProjC,X(X)
��2�| {z }

=(1)

+E
���ProjC,X(X)− E[X ]

��2�| {z }
=(2)

+2E
�¬
X − ProjC,X(X),ProjC,X(X)− E[X ]

¶�| {z }
:=(3)

.Now (3) = 0 sine ProjC,X(X) = E
�
X
��ProjC,X(X)

�. �2 Bakgrounds on theory of polytopesLet E be a d dimensional vetor spae and E∗ its dual.De�nition 5 (k-�at). A k-�at is a k-dimensional a�ne subspae E.De�nition 6 (onvex polyhedron and onvex polytope). A onvex polyhedron is the intersetion of a�nite subset of losed halfspaes. If it is bounded, it is a onvex polytope.De�nition 7 (ell). A ell is the intersetion of a �nite set of �ats and open halfspaes. And thus,equivalently, it is the relative interior of a onvex polyhedron. If R ⊂ E, we denote cell(R) the relativeinterior of the onvex hull of R.De�nition 8 (simplex). A simplex is cell(R) where R is a set of a�nely independent points.
• A 2-dimensional simplex is the interior of a triangle.
• A 3-dimensional simplex is the interior of a tetrahedron.De�nition 9 (irumsphere). A irumsphere of a set R ⊂ E is a sphere S of E suh that R ⊂ S.De�nition 10 (supporting halfspae). Let C be a onvex subset of E. A hyperplane H supports C if

H ∩ C 6= ∅ and C is ontained into one of the losed halfspaes de�ned by H.Lemma 2.1. Let C  E be a onvex subset of E. If H is a supporting hyperplane of C, then everypoint of H ∩ C is a frontier point of C.Proof: Let H be a supporting hyperplane of C of equation φ(x) = α. Consider v ∈ E suh that
∀x ∈ E φ(x) = 〈x|v〉.Consider a ∈ H ∩ C. We may assume that ∀x ∈ C φ(x) = 〈x|v〉 ≥ α. If a does not belong to theboundary of C, ∃ε ≥ 0, B(a, ε) ⊂ C so for any λ > 0 small enough, a− λv ∈ C and

α ≤ φ(a− λv) = 〈a|v〉 − λ‖v‖2 < 〈a|v〉 = αwhih yields a ontradition. Consequently a ∈ ∂C. �4



Corollary 2.2. Every point of the boundary of a onvex subset of E belongs to one of its supportinghyperplanes.Proof: The proof is straightforward using the same approah as for the previous lemma. �Lemma 2.3. If C is a non empty losed onvex subset of E, distint of E, then every point of theboundary ∂C belongs to a supporting hyperplane of C.Proof: a ∈ ∂C ⇒ ∀k ∈ N∗, ∃xk ∈ B
�
a, 1

k

�
, xk /∈ C. We denote yk = pC(xk) the projetion of xk on C,

zk = xk−yk

‖xk−yk‖
. Owing to the haraterization of the projetion on a losed onvex subset, we have
∀z ∈ C, 〈xk − pC(xk), xk − z〉 = |xk − pC(xk)|

2 −

≤0z }| {
〈xk − pC(xk), z − pC(xk)〉

≥ |xk − pC(xk)|2 > 0 beause xk /∈ C.Every vetor zk lying on the unit sphere of E (whih is ompat), one an extrat a subsequene of zφ(k)that onverges to a vetor v, with |v| = 1. As (xk)1≤k onverges to a, by ontinuity of pC and of thesalar produt, we have
∀z ∈ C, 〈v, a− z〉 = lim

k→+∞
〈zφ(k), xφ(k) − z〉 ≥ 0.In other words C is ontained in the halfspae {z ∈ E, 〈v, a − z〉 ≥ 0}. Moreover, as a is in theorresponding hyperplane H , H is a supporting halfspae of C. �De�nition 11 (fae). A fae of a onvex polyhedron P is the relative interior of the intersetion of ahyperplane supporting P with the losure of P .Proposition 2.4. Let P be a onvex polyhedron, a fae of P is a ell, and a fae of a fae of P is a faeof P .De�nition 12 (k-fae). A k-fae is a a fae whose a�ne losure has dimension k.De�nition 13 (ell omplex). A ell omplex is a �nite olletion of pairwise disjoint ells so that thefae of every ell is in the olletion.De�nition 14 (opposite k-faes). Two distint k-ells of a ell omplex are opposite if they have aommon (k − 1)-fae.De�nition 15 (triangulation). Let S be a �nite point set of E. A triangulation T of S is a ell omplexwhose union is the onvex hull of S and whose set of 0-ells is S.De�nition 15 is a non standard de�nition beause ells are not required to be simplies. This formalismis due to Steven Fortune [4℄.De�nition 16 (proper triangulation). A proper triangulation is a triangulation whose all ells aresimplies.Any triangulation an be ompleted to a proper triangulation by subdividing non simpliial ells.2.1 Voronoi diagrams and Delaunay triangulationsVoronoi diagramLet E be a d-dimensional Eulidean spae, and S a �nite subset of E. In the following, elements of Swill be alled sites.De�nition 17 (Voronoi ell). For a nonempty subset of S, R ⊂ S, the Voronoi ell of R, denoted V (R)is the set of all points in E that are equidistant from all sites in R, and loser to every site of R than toany site not in R.Proposition 2.5. • Clearly, is r ∈ S, V ({r}) is the set of all points stritly loser to r than toany other site. In partiular, it is the interior of the Voronoi slab assoiated to r in S. (See thede�nition of a Voronoi slab in Setion 1.) 5



• V (R) may be empty.
• Any point of E lies in V (R) for some R ⊂ S.De�nition 18 (Voronoi diagram). The Voronoi diagram V is the olletion of all nonempty Voronoiells V (R) for R ⊂ S.Delaunay triangulationDe�nition 19 (Delaunay ell). If R ⊂ S, and V (R) is a non empty Voronoi ell, then the Delaunayell D(R) is cell(R).De�nition 20 (Delaunay triangulation). The Delaunay triangulation D of S is the olletion of Delau-nay ells D(R), where R varies over subsets of S with V (R) non empty.Proposition 2.6 (Empty irumsphere property). For R ⊂ S, cell(R) is a Delaunay ell if and only ifthere is is a irumsphere of R that ontains no site of S\R in its interior.Proof: Suh a irumsphere an be obtained with enter an point in the Voronoi ell V (R). �PSfrag replaements Voronoi diagramDelaunay triangulationData set Ss1
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Figure 1: Voronoi diagram and Delaunay triangulation of a data set S of size 10. We have C ∈
VS({s1, s2}). So C is the enter of an empty irumsphere of {s1, s2}. The point C123 is the enter ofthe irumsphere of the Delaunay triangle {s1, s2, s3}.Theorem 2.7. Let S be a set of n points in E with Voronoi diagram V and Delaunay triangulation D.Then1. V is a ell omplex that partitions E.2. D is a triangulation of S.3. V and D are linked with the following duality relation:For R,R′ ⊂ S, V (R) is a fae of V (R′) if and only if D(R′) is a fae of D(R).4. V (R) is unbounded if and only if every site of R is on the boundary of the onvex hull of S.We refer to [4℄ for a detailed proof.
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LoalityDe�nition 21 (loally Delaunay). We onsider two opposite d-ells cell(R) and cell(R′) in a triangula-tion T with irumspheres C and C′. cell(R) and cell(R′) are loally Delaunay if R′\R is outside of C.This is equivalent to R\R′ outside of C′.A triangulation is loally Delaunay if every pair of opposite d-ells is loally Delaunay.Lemma 2.8 (Delaunay and loally Delaunay). A triangulation is Delaunay if and only if it is loallyDelaunay.We refer to [4℄ for a detailed proof.De�nition 22 (General position). Let S be a nonempty �nite set of sites in E. S is in general positionif no d+ 1 points of S are a�nely dependent and if no d+ 2 points of S lie on a ommon sphere.De�nition 23 (Inirle list). In the following, if S is a �nite nonempty set of sites, D is a Delaunaytriangulation of S and x ∈ E is a settle point, we all inirle list and denote ICLD(x) the set of d-ellsof D whose irumsphere ontains x.If S is in general position, no Delaunay ell of S is degenerate. Every ell of the triangulation is a simplexand for any R ⊂ S, V (R) has dimension d+ 1− |R|.Computing the Delaunay triangulation and the Voronoi diagramWhereas the Voronoi diagram was de�ned before the Delaunay triangulation, it has been reognizedthat it is easier to devise algorithms in terms of Delaunay triangulation, espeially beause of the loalityproperty 2.8.A ommon data struture for Delaunay triangulations is a graph struture where eah simplex is a�node�. The node ontains the indies of the d+ 1 sites of the simplex and the pointers to the adjaentsimplies. Null pointers are used when the simplies lie on the boundary of the triangulation. Cells oflower dimension are not diretly represented in the graph struture. Another onvenient onvention isthat the kth pointer stored in the node orresponds to the faet obtained by deleting the kth site in thenode. Moreover the order is hosen so that the orientation of every simplex in the triangulation remainsalways positive.Here, we present the priniples of inremental algorithms for Delaunay triangulations. In this kind ofalgorithms, sites are added one by one, and the Delaunay triangulation is modi�ed to inlude eah newsite. Many other algorithms have been designed for omputing the Delaunay triangulation, espeiallyin dimension 2. Moreover, omputing the Delaunay triangulation of the Voronoi diagram in the one-dimensional ase simply amounts to sorting the data set. An advantage of inremental algorithms isthat they are valid in any dimension. Moreover, for another purpose in the following, we will need a newalgorithm (the friend node algorithm presented in Setion 5) that requires a stage whih is very similarto the insertion of a new point in the Delaunay triangulation. Hene we will fous here on inrementalalgorithms.Let S = (s1, · · · , sN ) be a nonempty �nite set of sites of E of ardinal N . We de�ne the sets Sk :=
(s1, · · · , sk) for k ∈ {1, · · · , N}. Now, for a settled i < N , let us onsider Di the Delaunay triangulationof Si. We inspet the situation of si+1 with respet to the Delaunay triangulation Di. From this analysis,the Delaunay triangulation will be modi�ed loally to build a new Delaunay triangulation Di+1 of Si+1.When all the sites of S will be proessed, we will have the omplete Delaunay triangulation D of S.Three situations an our, if S is in general position:1. si+1 lies in the interior onvex hull of Si.2. si+1 does not lie in any irumsphere of any simplex of Di.3. si+1 lies outside of the onvex hull of Si but belongs to a irumsphere of a simplex of Di.
(1) In the �rst situation, let denote S := ICLDi

(si+1) and F1, · · · , Fp the external faes of S of anydimension k < d. We an show that the ell omplex de�ned by
Di+1 := (Di\S) ∪

�
cell(Fj , si+1)j , 1 ≤ j ≤ p

©
∪
�
{si+1}

©7



is the Delaunay triangulation assoiated to Si+1. In a more general setting, we have the followingproperty:Proposition 2.9 (star-shaped inirle list). Let S be a nonempty �nite set of sites of E and x ∈ E thatlies on the onvex hull of S. Consider C the union of the d-ells of ICLD(x) and of all its faes. Then
C is star-shaped from x, that is for any point p ∈ C, [x, p] ⊂ C.
(2) The seond situation is the simplest. If F1, · · · , Fp are the external faes of the triangulation Di (ofany dimension k < d) that are visible from si+1. We an show that the ell omplex de�ned by

Di+1 := Di ∪
�
cell(Fj , si+1)j , 1 ≤ j ≤ p

©
∪
�
{si+1}

©is the Delaunay triangulation assoiated to Si+1.
(3) In the third situation, if we denote S = ICLDi

(si+1) the set of elements of Di whose irumsphereontains si+1 and F1, · · · , Fp are the external faes) of this set whih are not visible from si+1 and
Fp+1, · · · , Fp+q are the external faes of Di that are not faes of elements of S and that are visible from
xi+1. We an show that the ell omplex de�ned by

Di+1 := (Di\S) ∪
�
cell(Fj , si+1)j , 1 ≤ j ≤ p

©
∪
�
{si+1}

©is the Delaunay triangulation assoiated to Si+1.The �rst triangulation Dd+1 is made of a simple simplex de�ned by the d+ 1 �rst inserted points.One important modi�ation of the inremental algorithm onsists in inserting sites in a random order.Its expeted running time is better than the worst ase running time for the inremental algorithm.The worst ase omplexity of omputing the Delaunay triangulation of n points in a d dimensionalEulidean spae E is O �n log(n) + n⌈
d
2 ⌉
�.On the pratial implementationThe �rst step is the Loalization. It onsists in �nding whether the new site x is in the onvex hull of Sor not, and if it is the ase, in what Delaunay ell of the triangulation TS x lies. A survey on loalizationmethods is available in [2℄. When x is inside of the onvex hull of S, the loalization proedure returnthe index of the the Delaunay ell where it lies. This orresponds to the situation (1). When x is outsideof this onvex hull, the loalization returns a Null pointer. This orresponds to situations (2) and (3).The seond step onsists in �nding the list of the Delaunay ells whose irumsphere ontains x (theinirle list). In the situation (1), this list ontains at least the Delaunay ell where x is loated. Owingto the Proposition 2.9, we know that the union of these Delaunay ells is star-shaped so that it an bedetermined loally by testing onneted ells in the graph struture presented above.The last step onsists in deleting the Delaunay ells of the inirle list and onneting the new site to theexternal faes of the inirle list or the visible faes of the onvex hull of S depending on the situation

(1), (2) or (3).3 Classial examples of fast nearest neighbor searh algorithmsin low dimensionsGiven a set of n points, {x1, · · · , xn} ⊂ E, the nearest neighbor problem is to �nd the point that islosest to a query point q ∈ E. Many algorithms have been proposed to avoid the large omputationalost of the obvious brute fore algorithm. When one has to perform a big amount of nearest neighborsearhes, a preproessing of the data set will be pro�table if it redues the average query time.The problem is optimally solved in the ase of dimension 1, where the best algorithm is, as a prepro-essing to sort the data set by the unique oordinate of its points. (Approximative ost of O(n ln(n))).The searh algorithm onsists of a simple binary searh whose ost is ln(n)
ln(2) +O(1).In the ase of low dimensions, most fast searh algorithms still have an approximative preproessingost of O(n log(n)) and an average searh ost in O(log(n)) in low dimension. The riterion of hoieamong them relies on 8



• their e�etive speed on real data sets,
• the required memory,
• the sensitivity of the speed to the dimensionality.A �rst obvious optimization alled partial distane searh (P.D.S.) onsists of a simple modi�ationof the brute fore searh: during the alulation of the distane, if the partial sum of square di�erenesexeeds the distane to the nearest neighbor found so far, the alulation is aborted. This almost alwaysspeeds up the nearest neighbor searh proedure.3.1 The Kd-tree algorithmThe Kd-tree algorithm is the arhetype of the branh-and-bound nearest neighbor searh tree. It is verypopular beause of its simpliity.Building the tree:
• Every point of the data set is assoiated to the root node.
• The data set is being sorted by its �rst oordinate. Then it is divided in two subsets of ardinal�

n
2

�
+ 1 or �n2 �.

• Eah subset is assoiated to a hild node of the root node.
• The proess is repeated on eah hild node reursively using the oordinate axis in a yli order,until there are less than two points in eah node.Searhing in the tree: Let q be the query point.
• The searh proedure begins by searhing in what hild node q is (depending of its �rst oordinate).
• This hild node is then searhed, and the proess is repeated reursively until a terminal node isreahed.
• A trivial nearest neighbor searh is performed in the terminal node. (Partial Distane Searhoptimization an be used.)
• The proedure moves up to the parent of the terminal node.
• If the distane d2 between q and the hyperplane that splits the data set is smaller than the distane
dmin to the nearest neighbor found so far, the other hild node is searhed.

• The proedure ontinues its way bak to the root node.Complexity: Exept in one dimension where the searh omplexity is logarithmi (it amounts to abinary searh), the worst ase of the Kd-tree orresponds to the ase where every node of the tree isexplored. Then the worst ase omplexity is time exponential. The distanes to every point is omputed.The omplexity of the preproessing is O(d × n log(n)).3.2 The prinipal axis tree algorithmThe Prinipal Axis Tree (PAT) is a generalization of the Kd-tree proposed by MNames in [10℄. Insteadof using a oordinate axis to sort the data set, its prinipal axis is used at eah step. Moreover, thenumber of hild node in the tree an be greater than 2 at eah generation.Building the tree:
• Every point of the data set is assoiated to the root node.
• The data set is being sorted by its projetion on its prinipal axis. Then it is partitioned in ncsubsets whose ardinality is � n

nc

�
+ 1 or � n

nc

�.9
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d22x ≥ d223 ∀x ∈ Region 3,

d2(q, x) ≥ d2q2 + d223 + d234 ∀x ∈ Region 4.Searhing in the tree: Let q be the query point.
• The searh proess begins by searhing in whih hild node q is (by omputing its projetion onprinipal axis).
• This hild node is then searhed, and the proess is repeated reursively until a terminal node isreahed. 10



• A partial distane searh is then performed in the terminal node.
• The proedure moves up to the parent of the terminal node.
• The elimination ondition is heked to deide if brother nodes have to be searhed or not.
• The proedure ontinues its way bak to the root node.Choie of parameter nc: For normal or uniform random data sets (and distribution of query points),best overall performanes are obtained with nc = 7 (independently from dimensionality for d < 10).(The same optimal value is obtained by MNames in [10℄.) In the ase where the data set is an optimalquantizer of those distributions, best performane is obtained with nc = 13.Complexity: Spae storage is O(n). Exept in the one-dimensional setting where the searh omplexityis logarithmi (it omes to a binary searh), the worst ase of the Kd-tree orresponds to the ase whereevery node of the tree is explored. Then the worst ase omplexity is time exponential (2n omparisonsof oordinates). n distanes are omputed. The omplexity of the preproessing is O(d × n log(n)).Algorithm performane: On a 5000 points Gaussian data set in R2, the depth of the tree is 4.
• 27 (partial) distanes,
• 15 salar produts,
• 9 binary searhesare performed in average.Why using this spae partitioning ? The idea is that good empirial performane of PAT are dueto the fat that it takes advantage of the shape of the data set. Yet obviously when both query pointdistribution and data sets lie on a smaller dimension (k < d) subspae of E, one retrieves the sameomplexity as when using the same algorithm on a k dimensional spae. This intrinsi dimension is oftenless than the spatial dimension of the spae. In a more general setting, PAT takes advantage of highorrelations in the data set oordinates.However if one uses the same number of hild nodes nc in Kd-tree and PAT tree, we see that
• Preproessing time is longer for PAT than for Kd-tree.
• The �rst traversal of the tree to a terminal node is more ostly (projetions have to be omputed).But PAT is still faster beause its geometrial partition of the spae �ts the data set in a more relevantway. To be preise, it happens less often than one has to searh a brother node with PAT than withKd-tree.In [3℄, the same spae deomposition was proposed for the nearest neighbor searh problem (but usingthe only 2 hild node at eah generation). They justify the use of this deomposition using a heuristiriterion, aording to whih the best possible deomposition of the data-set into two subsets for branhand bound nearest neighbor searh is to split the data set with respet to its projetion on the prinipalaxis.4 A new quantization based tree algorithmAs we have seen in previous setions, a good spae deomposition that �ts to the data distribution maylead to a faster branh and bound nearest neighbor searh algorithm, if less brother nodes have to beexplored. The traversal of the tree an be a little more expensive if it is ompensated by the gain due tothe fat that less nodes are explored.Prinipal omponent analysis and optimal quantization are two types of projetion of a probabilitydistribution. Similar inertia deompositions hold in the quadrati ase (Huyghens lemma).PAT is based on a reursive spae deomposition based on the prinipal omponent analysis of theunderlying data set. The initial idea here is to design a branh and bound algorithm based on a reursivequantization of the empirial distribution of the underlying data set.11



4.1 The rude quantization tree algorithmBuilding the tree:
• Every point of the data set is assoiated to the root node.
• The data set is being partitioned into nc subsets orresponding to the Voronoi ells of an optimizedquantizer of the empirial distribution of the data set.
• Eah subset is assoiated to a hild node of the root node.
• The proess is repeated on eah hild node reursively until there are less than a ertain numberof points in eah node.Some other omputations are done during the preproessing that will be detailed further on.Remark. One noties that the resulting searh tree is not balaned and may have some longer branhes.Searhing in the tree: Let q be the query point.
• By performing trivial nearest neighbor researhes in the node's quantizer the searh algorithmtraverses the tree to a terminal node where a trivial partial distane searh is performed.
• The proedure moves up to the parent of the terminal node.
• The elimination ondition, (developed further on) is heked to deide whether brother nodes haveto be searhed or not.
• The proedure ontinues its way bak to the root node.Consisteny of the spae deomposition:Implementing only the way down to the terminal node (with nc = 7 in both prinipal axis tree andquantization tree), we naturally do not obtain always the index of the nearest neighbor. But we havenotied that the result is more often the right one with the quantization tree than with the prinipalaxis tree.For instane, in dimension 2, on a 5000 points Gaussian data set, on a million Gaussian query points,we noties:
• 56 perent of false results with PAT.
• 16 perent of false results with the quantization tree.Similar results are obtained with other values of the parameters and other data set distributions. Thisempirial test makes us reasonably optimisti about the performane of a branh and bound tree basedon this deomposition.Still, the ost of the way through the searh tree is more expansive with the quantization tree (asdesribed above).
• For the �quantization tree�, we have to perform trivial nearest neighbor searh to �nd the righthild node.
• For �prinipal axis tree�, we only ompute a projetion and perform a binary searh.Moreover, it was proved in [13℄ that in the ase of Gaussian distributions, the a�ne subspae spannedby stationary quantizers orrespond to the �rst prinipal omponents of the onsidered Gaussian dis-tribution. (This result, extended to the in�nite dimensional ase in [8℄ allows to e�iently omputeoptimal quadrati quantizers of bi-measurable Gaussian proesses.) Hene, in this ase, this shows thatthe quantization tree with two branhes at eah generation is related to the prinipal axis tree.First elimination ondition If the enter of the Voronoi ell orresponding to the urrent node is A, the�rst rough method to deide whether a brother node with enter B has to be explored or not is omputethe distane d2 of the query point Q to the Leibniz halfspae H(B,A). Then the node orrespondingto point B is explored if d2 is smaller than the distane to the nearest neighbor found so far, d1. We12



have d2 = AB
2 − AQ cosα and QB2 = QA2 + AB2 − 2AQAB cosα so that ⇒ cosα = QA2+AB2−QB2

2AQAB
.This yields d2 = QB2−QA2

2AB
. Hene, the omputation of the distane to the Leibniz halfspae requiresone subtrations QA2−QB2, (QA2 and QB2 an be omputed during the searh in the quantizer in theparent node), and one multipliation by 1

2AB
. ( 1

2AB
an be omputed during the preproessing.)Then, it is lear that the nearest brother node orrespond to the seond nearest neighbor in the quantizer,and the seond nearest to the third nearest neighbor, and so on. Hene, brother nodes have to be exploredin the order de�ned by the distanes of its enters the query point.We an also use the same optimization of the lower bound proposed by MNames in [10℄ and presentedin Setion 3.2. Referring to Figure 4, the lower bounds di are reursively inremented when exploringbrother nodes.
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Let us onsider the Voronoi diagram plotted in Figure 5. In this �gure, we obviously know that whenthe query point is in a ell A, its nearest neighbor annot be in ell B, beause ell B is �hidden� byloser ells. One has to give a preise mathematial sense to �hidden� in this sentene. However, in thequantization tree as it has been desribed, the distane of query point to H(a, b) has to be omputed.A �rst idea is to ompute for eah 1 ≤ i ≤ nc a list of �friends� among brother nodes in whih thenearest neighbor an be when q is in ell i.This list has to be large enough to ensure that it ontains the nearest neighbor but as small as possiblein order to redue the omputations of elimination onditions.As onerns the hoie of the parameter nc, we have to take in onsideration that inreasing nc makesthe depth of the tree smaller but also makes the nearest neighbor searh slower for eah generation ofthe searh tree.How an we obtain a friend Voronoi ells list? The �rst observation about obtaining suh a friendlist is that it is not a simple problem. Indeed, this list is a priori not redued to adjaent ells in theVoronoi diagram. Moreover, in some ases, the minimal friend list an be quiet large. So is the ase forunbounded Voronoi ells for example.
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Figure 6: In these ases, the nearest neighbor of the query point q may be p although p is not in anadjaent Voronoi ell.A proedure to obtain suh a friend Voronoi list is proposed in Setion 5.5 Some optimizations for the quantization tree algorithmIn Setion 2.1, basi de�nitions about Voronoi diagrams and Delaunay triangulations that are prerequi-sites to this setion ahev been realled.Remark (Voronoi slabs and Voronoi ells). From their respetive de�nitions, one an easily dedue thefollowing properties:
• Let S ⊂ E be a �nite set of sites, let C be an assoiated Voronoi partition and onsider s ∈ S.Then it is lear that V ({s}) =

◦üslabC(s).
• The points of the Voronoi ells V (R) with R ⊂ S and cardR > 1 belong to the boundaries ofVoronoi slabs.
• As a onsequene, for s ∈ S, as the boundary V ({s}) is onstituted with its faes of lower dimen-sions, previous remark yields V ({s}) = slab(s) and ∂ slabS(s) = ∂VS({s}).14



Notations: In the following of this setion, if S ⊂ E is a �nite set of sites in E, one will denote TSthe Delaunay triangulation of S, DGS the Delaunay graph of S, VS its Voronoi diagram. For R ⊂ S,
VS(R) will represent the Voronoi ell of R in S. If CS is a Voronoi partition assoiated to S, and s ∈ S,
slabS(s) will denote the Voronoi slab assoiated to S is the Voronoi partition C.De�nition 24 (Leibniz halfspae). For (a, b) ∈ E2 let us denote H(a, b) :=

n
x ∈ Rd||x− a| ≤ |x − b|

othe Leibniz halfspae assoiated to (a, b).Proposition 5.1. An obvious property is if S is a �nite set of sites of E, and p ∈ S,
VS({p}) =

\
s∈S,s6=p

H(p, s).Proposition 5.2. If S is a �nite set of sites of E, and p ∈ S, VS({p}) =
T

{s,p}∈DGS

H(p, s).Lemma 5.3. Let S ⊂ E be a nonempty �nite set of sites in E and x ∈ E\S. Consider s ∈ S, thefollowing assertions are equivalent:1. {x, s} ∈ DGS∪{x}.2. VS({s}) ∩ VS∪{x}({x}) 6= ∅.3. VS({s}) ∩H(x, s) 6= ∅.Proof: See Figure 5 for an illustration of the proof.
• (1. ⇒ 2.) Assume that {x, s} ∈ DGS∪{x} then by de�nition, it is equivalent to VS∪{x}({x, s}) 6= ∅.
VS∪{x}({x, s}) is (d−1)-fae of VS∪{x}(x). Moreover, by de�nition of Voronoi ells, VS∪{x}({x, s}) ⊂
VS({s}), whih is open. As a onsequene, ∀y ∈ VS∪{x}({x, s}), ∀ε > 0, B(y, ε) ∩ VS∪{x}(x) 6= ∅.And for small enough ε, B(y, ε) ⊂ VS({s}). We an onlude that VS({s}) ∩ VS∪{x}({x}) 6= ∅.

• (2. ⇒ 3.) is obvious owing to Proposition 5.1.
• (3. ⇒ 1.) If y ∈ VS({s}) ∩H(x, s), let us show that VS∪{x}({x, s}) 6= ∅.Consider the segment [s, y]. By onvexity, [s, y] ⊂ VS({s}). Thus every point of [s, y] is loser to sthan to any other point of S. On the other hand, it an either be loser to s than to x, or loserto x than to s or at the same distane.We now de�ne the appliations f : [0, 1] → [s, y] ⊂ E by f(λ) = λs + (1 − λ)y and ∆ : E → R by
∆(p) = d(p, x)− d(p, s).
∆ ◦ f is a ontinuous funtion with ∆ ◦ f(0) > 0, ∆ ◦ f(1) < 0. The intermediate value theoremshows that there exists λ∗ suh that ∆ ◦ f(λ∗) = 0 and thus f(λ∗) ∈ VS∪{x}({x, s}). �The �rst modi�ation made in the quantization tree algorithm is to assume that the points of thequantizer at eah generation are points of the underlying odebook Γ. (In order to ful�ll this requirement,we projet an optimal quantizer onto the odebook.)Corollary 5.4. Let Γ = {Γ1, · · · ,Γn} be a odebook of E. S = {s1, · · · , sp} ( Γ be subset of Γ.Let ProjΓ be a nearest neighbor projetion on Γ. Γ is being partitioned into p subsets Γ1, · · · ,Γp with

Γi = Γ ∩ slabS(si), by their nearest neighbor projetion on S.Consider q ∈ E. If q ∈ slabS(s) and t = ProjΓ(s) then {t, s} ∈ DGS∪{t}.Proof: This is a straightforward onsequene of the previous lemma. �Notation: Let S be a set of sites in E. For a point t in E, we denote PIS(t) =
n
s ∈ S, {s, t} ∈ DGS∪{t}

o.The notation PI stands for �Pseudo-Insertion�.From an algorithmi viewpoint, the Delaunay graph of S being omputed, PIS(t) stands for the setsof points in S, that are onneted to t when updating the Delaunay graph to take aount of this newpoint. 15
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Figure 7: If the query point q lies on the dark gray region H(x, s)∩ VS({s}) its nearest neighbor may be
x. Implementing a proedure that omputes PIS(t) is very similar to the insertion proedure of point tin TS.First friend node algorithm: This leads to a �rst method to ompute a friend list:For every point p of the underlying odebook,

• Compute s = ProjS(p) and PIS(p).
• Then for every point s′ ∈ PIS(p), insert s in the set of friends of node s′.This method gives a �rst algorithm to ompute friend list. Still, when the data set is large, it is veryexpensive beause one has to deal with all the points of the data set.In fat it is possible to ompute an aeptable friend list thanks to the same result 5.3 without usingthe points of the underlying data set.Fast friend node algorithm: In this setion, another method to ompute friend node lists is devisedwhih does not need to deal with the omplete underlying data set but only the underlying odebook.When keeping the same notations, the priniple of the method is to ompute for every slabS(s), s ∈ S,of the Voronoi partition CS , the set UPIS(s) :=

S
p∈slabS(s)

PIS(p). It is the union of all the pseudo-insertionsof points of slabS(s). If one is able to ompute this set, the resulting friend nodes algorithm simplywrites:For every point s ∈ S,
• Compute UPIS(s).
• Then for every point s′ ∈ UPIS(s), insert s in the set of friends of node s′.The question is: how an we ompute UPIS(s)?Lemma 5.5. With the same notations, one has UPIS(s) =

S
p∈∂ slabS(s)

PIS(p). In other words, we have tohek points of the boundary ∂ slabS(s) of slabS(s).Remark. Let us reall that, thanks to Proposition 2.5, (∂ slabS(s) = ∂VS({s}).Proof: Consider x ∈ slabS(s) suh as s′ ∈ PIS(x). Let us de�ne x∗, suh that {x∗} = [x, s′] ∩ ∂VS(s).16



• One has H(x∗, s′) ⊃ H(x, s′). So VS({s′}) ∩ H(x∗, s′) ⊃ VS({s′}) ∩ H(x, s′), hene VS({s′}) ∩
H(x, s′) 6= ∅ ⇒ VS({s′}) ∩ H(x∗, s′) 6= ∅ that is equivalent to s′ ∈ PI(x∗) thanks to the Lemma5.3.

• Finally, ∀x ∈ slabS(s), ∀s′ ∈ PIS(x), ∃x∗ ∈ ∂ slabS(s) suh that s′ ∈ PIS(x
∗). �Remark. As there are not a �nite number of sites on the boundaries, this does not give an e�etivemethod for omputing UPIS(s) yet.As seen in Setion 2.1, omputing the set PIS(x) orresponds almost to the same algorithm as theinsertion proedure in an inremental triangulation algorithm, that is:

• Loalization of x in the triangulation,
• Computation of the set ICL(x),
• UIS(x) is the set of points that belong to a ell of ICL(x) plus, if x is outside the onvex hull of
S, the points of the external faes of TS that are visible from x.Lemma 5.6. Let S be a non empty �nite set of sites in E. We onsider the irumsphere C of Delaunay

d-ell of the Delaunay triangulation TS. We denote c its enter and r its radius. Let s be a site of S.If VS({s}) ⊂ C 6= ∅ then c+ r
|s−c|(s− c) ∈ VS({s}).The proof is straightforward. This leads to an algorithm to ompute sets (UPIS(s))s∈S .

• For every Delaunay d-ell D of TS� Compute the enter c and radius r of its irumsphere.� For every site s ∈ S that is not in D, ompute p := c + r s−c
|s−c| ∈ VS({s}), and hek if thesite s is the nearest neighbor of p in S. If so is the ase, then the points of the Delaunay

d-ells D belong to UPIS(s).
• Then deal with unbounded Voronoi ells:� For every external fae F of the Delaunay triangulation, ompute a normal vetor uF diretedtoward the exterior of the onvex hull of S.� For two distint external faes F1 and F2 of the Delaunay triangulation, if 〈uF1

, uF2
〉 > 0then for every (s1, s2) ∈ F1 × F2, s1 ∈ UPIS(s2) and s2 ∈ UPIS(s1).In Figure 8, we present some friend Voronoi lists in the 2-dimensional ase.6 Test with real data setsTo perform the following tests, the quantization tree algorithm and the friend-node optimization havebeen implemented in C++. Beause of the additional feature related to omputational geometry thatwe needed, as the pseudo-insertion proedure, we had to implement a Delaunay triangulation. All the�gures presented in this artile were generated with this implementation of the Voronoi diagram withwhih we performed the following tests.6.1 Tests on Gaussian and uniform data setsIn Tables 9, 10 and 11, we report the exeution time for 10 millions nearest neighbor queries on data-sets of size 5000 generated with independent Gaussian pseudo random variables and with a uniformdistribution on the hyperube. The best overall performanes were obtained with nc = 35 hildren bynode for the quantization tree. The tests were performed with an Intel Pentium Dual CPU at 2GHz. Wenotied that in dimension d = 2 and d = 3, we had intermediate performanes between the �prinipal axistree� and the Kd-tree algorithms. In dimension 4, the performane of the �prinipal axis tree� and the�quantization tree� are lose one to eah other. Finally, it seems that the quantization tree has a better17
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Figure 8: Examples of friend Voronoi ells in a two-dimensional Voronoi diagram in the ase of a boundedVoronoi ell (left) and in the unbounded ase (right). In both ase, the dark gray region is the onsideredVoronoi ell and the light gray regions are the friend Voronoi ells.behaviour in dimensions greater than 5 where it signi�antly outperforms the two other implementedmethods.
d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8Quantization tree 1.76s 2.75s 5.35s 8.93s 15.99s 28.06s 52.31sPrinipal axis tree 1.21s 1.86s 4.49s 10.87s 20.14s 41.56s 82.30sKd-tree 1.88s 3.71s 8.54s 17.13s 31.06s 60.67s 118.93sFigure 9: Exeution time of 10 millions random queries on a data set of 5000 points, generated with aGaussian pseudo random generator.
d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8Quantization tree 2.59s 3.87s 6.46s 11.90s 27.54s 45.78s 84.63sPrinipal axis tree 1.33s 2.44s 4.94s 12.78s 41.02s 62.33s 119.88sKd-tree 2.82s 5.20s 11.32s 24.20s 47.51s 87.61s 164.52sFigure 10: Exeution time of 10 millions random queries on a data set of 10000 points, generated witha Gaussian pseudo random generator.
d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8Quantization tree 1.62s 2.30s 3.75s 6.47s 10.33s 15.91s 32.62sPrinipal axis tree 0.74s 1.52s 2.81s 6.71s 16.53s 28.03s 47.53sKd-tree 1.54s 2.82s 5.46s 10.64s 18.50s 31.60s 55.71sFigure 11: Exeution time of 10 millions random queries on a data set of 5000 points, generated with auniform pseudo random generator.Remark (Computational ost or the preproessing for the friend ell algorithm). An important fat thatwe have experiened is that, in higher dimensions, the friend ells list beomes bigger and there is no18



more ompetitive advantage in using it in dimension higher than 7 (when having less than 30 branhesper generation in the quantization tree). Moreover, as it requires to ompute Delaunay triangulationsduring the preproessing, whose omplexity exponentially inreases with the dimension, the omputationalost of the friend ell preproessing makes it useless in higher dimensions.The author is very grateful to Gilles Pagès (LPMA - Université Paris VI) for his helpful remarks andomments, and to Johan Mabille (Natixis) for his advies onerning the pratial implementation.Referenes[1℄ Jon Louis Bentley. Multidimensional binary searh trees used for assoiative searhing. Commun.ACM, 18(9):509�517, 1975.[2℄ Olivier Devillers, Sylvain Pion, and Monique Teillaud. Walking in a triangulation. Internat. J.Found. Comput. Si., 13:181�199, 2002.[3℄ Wim D'Haes, Dirk van Dyk, and Xavier Rodet. An e�ient branh and bound seah algorithm foromputing k nearest neighbors in a multidimensional vetor spae. IEEE Advaned Conepts forIntelligent Vision Systems (ACIVS), 2002.[4℄ Steven Fortune. Voronoi diagrams and Delaunay triangulations. Eulidean Geometry and Comput-ers, 1992.[5℄ Siegfried Graf and Harald Lushgy. Foundations of Quantization for Probability Distributions.Springer-Verlag Berlin and Heidelberg GmbH & Co. K, 2000.[6℄ Siegfried Graf, Harald Lushgy, and Gilles Pagès. Optimal quantizers for Radon random vetors ina Banah spae. J. Approx. Theory, 144(1):27�53, 2007.[7℄ Donald E. Knuth. Art of Computer Programming, Volume 3: Sorting and Searhing (2nd Edition).Addison-Wesley Professional, April 1998.[8℄ Harald Lushgy and Gilles Pagès. Funtional quantization of Gaussian proesses. Journal of Fun-tional Analysis, 196(2):486�531, Deember 2002.[9℄ Harald Lushgy and Gilles Pagès. Funtional quantization rate and mean regularity of proesseswith an appliation to Lévy proesses. Ann. Appl. Probab., 18(2):427�469, 2008.[10℄ James MNames. A fast nearest-neighbor algorithm based on a prinipal axis searh tree. IEEETrans. Pattern Anal. Mah. Intell., 23(9):964�976, 2001.[11℄ Gilles Pagès and Benedikt Wilbertz. Intrinsi stationarity for vetor quantization: Foundation ofdual quantization. Preprint, 2010.[12℄ Gilles Pagès and Benedikt Wilbertz. Sharp rate for the dual quantization problem. Preprint, 2010.[13℄ Thaddeus Tarpey, Luning Li, and Bernard D. Flury. Prinipal points and self-onsistent points ofelliptial distributions. Ann. Stat., 23(1):103�112, 1995.
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